Lipschitz functions and approximate resolutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz Continuity and Approximate Equilibria

In this paper, we study games with continuous action spaces and non-linear payoff functions. Our key insight is that Lipschitz continuity of the payoff function allows us to provide algorithms for finding approximate equilibria in these games. We begin by studying Lipschitz games, which encompass, for example, all concave games with Lipschitz continuous payoff functions. We provide an efficient...

متن کامل

On approximate inverse systems and resolutions

Recently, L. R. Rubin, T. Watanabe and the author have introduced approximate inverse systems and approximate resolutions, a new tool designed to study topological spaces. These systems differ from the usual inverse systems in that the bonding maps paa′ are not subject to the commutativity requirement paa′pa′a′′ = paa′′ , a ≤ a′ ≤ a′′. Instead, the mappings paa′pa′a′′ and paa′′ are allowed to d...

متن کامل

Controlling Lipschitz functions

Given any positive integers m and d, we say the a sequence of points (xi)i∈I in Rm is Lipschitz-d-controlling if one can select suitable values yi (i ∈ I) such that for every Lipschitz function f : Rm → Rd there exists i with |f(xi)−yi| < 1. We conjecture that for every m ≤ d, a sequence (xi)i∈I ⊂ Rm is d-controlling if and only if sup n∈N |{i ∈ I : |xi| ≤ n}| nd =∞. We prove that this conditio...

متن کامل

Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...

متن کامل

Bandlimited Lipschitz Functions

We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2002

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(01)00156-0